Search results for "UV radiation"

showing 10 items of 29 documents

First light observations of the solar wind in the outer corona with the Metis coronagraph

2021

In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H I Lyman-α corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first H I …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSolar windFOS: Physical sciencesAstrophysics01 natural sciencesWind speedlaw.inventionsymbols.namesakeSun: corona – solar wind – Sun: UV radiationlaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsCoronagraphSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Sun: coronaAstronomy and AstrophysicsPlasmaSolar wind Sun: corona Sun: UV radiationSun: UV radiationCoronaSolar windAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceTemporal resolutionPhysics::Space PhysicssymbolsOutflowDoppler effect
researchProduct

Bright Hot Impacts by Erupted Fragments Falling Back on the Sun: Magnetic Channelling

2016

Dense plasma fragments were observed to fall back on the solar surface by the Solar Dynamics Observatory after an eruption on 7 June 2011, producing strong EUV brightenings. Previous studies investigated impacts in regions of weak magnetic field. Here we model the $\sim~300$ km/s impact of fragments channelled by the magnetic field close to active regions. In the observations, the magnetic channel brightens before the fragment impact. We use a 3D-MHD model of spherical blobs downfalling in a magnetized atmosphere. The blob parameters are constrained from the observation. We run numerical simulations with different ambient density and magnetic field intensity. We compare the model emission i…

010504 meteorology & atmospheric sciencesField (physics)FOS: Physical sciencesAstrophysics01 natural sciencesAtmosphereSettore FIS/05 - Astronomia E AstrofisicaSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressureSun: magnetic field010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsSun: UV radiation Supporting material: animationPlasmaCoronal loopAstronomy and AstrophysicRam pressureMagnetic fieldStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physics
researchProduct

Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA

2019

The Interface Region Imaging Spectrograph (IRIS) has observed bright spots at the transition region footpoints associated with heating in the overlying loops, as observed by coronal imagers. Some of these brightenings show significant blueshifts in the Si iv line at 1402.77 A (logT[K] = 4.9). Such blueshifts cannot be reproduced by coronal loop models assuming heating by thermal conduction only, but are consistent with electron beam heating, highlighting for the first time the possible importance of non-thermal electrons in the heating of non-flaring active regions. Here we report on the coronal counterparts of these brightenings observed in the hot channels of the Atmospheric Imaging Assem…

010504 meteorology & atmospheric sciencesSun: activity Sun: corona Sun: UV radiation Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysicsElectron01 natural sciences0103 physical sciencesmedicineAstrophysics::Solar and Stellar AstrophysicsIris (anatomy)010303 astronomy & astrophysicsSpectrographSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsAstronomy and AstrophysicsCoronal loopThermal conductionmedicine.anatomical_structureAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceCoronal planePhysics::Space PhysicsCathode rayAstrophysics::Earth and Planetary Astrophysics
researchProduct

Measuring the electron temperatures of coronal mass ejections with future space-based multi-channel coronagraphs: a numerical test

2018

Context. The determination from coronagraphic observations of physical parameters of the plasma embedded in coronal mass ejections (CMEs) is of crucial importance for our understanding of the origin and evolution of these phenomena. Aims. The aim of this work is to perform the first ever numerical simulations of a CME as it will be observed by future two-channel (visible light VL and UV Ly-α) coronagraphs, such as the Metis instrument on-board ESA-Solar Orbiter mission, or any other future coronagraphs with the same spectral band-passes. These simulations are then used to test and optimize the plasma diagnostic techniques to be applied to future observations of CMEs. Methods. The CME diagno…

010504 meteorology & atmospheric sciencesSun: coronal mass ejections (CMEs)Plasma parametersT-NDASContext (language use)Astrophysics01 natural sciencessymbols.namesakeMethods: data analysis0103 physical sciencesRadiative transferCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsQB Astronomydata analysis [Methods]010303 astronomy & astrophysicsQCQB0105 earth and related environmental sciencesPhysicsUV radiation [Sun]numerical [Methods]Methods: numericalAstronomy and AstrophysicsPlasmaSun: UV radiationPolarization (waves)coronal mass ejections (CMEs) [Sun]Computational physicsQC PhysicsPlasmasSpace and Planetary SciencePhysics::Space PhysicssymbolsMagnetohydrodynamicsDoppler effectAstronomy & Astrophysics
researchProduct

Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in …

2019

Depending on the environment, sunlight can positively or negatively affect litter decomposition, through the ensemble of direct and indirect processes constituting photodegradation. Which of these processes predominate depends on the ecosystem studied and on the spectral composition of sunlight received. To examine the relevance of photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet radiation (UV) and blue light from leaves of Fagus sylvatica and Bettda pendula at two different stages of senescence in both a controlled-environment experiment and outdoors in four different forest stands (Picea abies, Pagus sylvatica, Acer platanoides, Betula pendula). Co…

0106 biological sciences0301 basic medicineCanopyUltraviolet RaysPhysiologyUV-B RADIATIONPlant ScienceForestsANTHOCYANINS01 natural sciencesUV radiationBOREAL FOREST03 medical and health scienceschemistry.chemical_compoundFagus sylvaticaPhotodegradationGeneticsPhotodegradationEcosystemFinlandComputingMilieux_MISCELLANEOUS11832 Microbiology and virologyFlavonoidsSunlight[SDV.EE]Life Sciences [q-bio]/Ecology environment4112 ForestryPhotolysisbiologyChemistryTEMPERATEPLANT LITTERPicea abies15. Life on landPlant litterbiology.organism_classificationPhenolic compoundsUnderstorey light environmentSODANKYLAPlant LeavesHorticultureLIGHT030104 developmental biology13. Climate actionBetula pendulaChlorophyllPATTERNS1182 Biochemistry cell and molecular biologyLEAF-LITTER DECOMPOSITION010606 plant biology & botany
researchProduct

Intercomparison of spectroradiometers and Sun photometers for the determination of the aerosol optical depth during the VELETA-2002 field campaign

2006

In July 2002 the VELETA-2002 field campaign was held in Sierra Nevada (Granada) in the south of Spain. The main objectives of this field campaign were the study of the influence of elevation and atmospheric aerosols on measured UV radiation. In the first stage of the field campaign, a common calibration and intercomparison between Licor-1800 spectroradiometers and Cimel-318 Sun photometers was performed in order to assess the quality of the measurements from the whole campaign. The intercomparison of the Licor spectroradiometers showed, for both direct and global irradiances, that when the comparisons were restricted to the visible part of the spectrum the deviations were within the instrum…

Atmospheric ScienceMeteorologyInstrumentationIrradianceRadiometersSoil ScienceAeronetNetworkAODAquatic ScienceOceanographyUV radiationlaw.inventionAbsorptionGeochemistry and PetrologylawEarth and Planetary Sciences (miscellaneous)CalibrationUrbanDirect solar irradianceField campaignEarth-Surface ProcessesWater Science and TechnologyRemote sensingSpectroradiometersEcologyElevationPaleontologyForestryPhotometerSize distributionAerosolBandGeophysicsSpectroradiometerSpace and Planetary ScienceCalibrationEnvironmental scienceSun photometersModel
researchProduct

First Determination of 2D Speed Distribution within the Bodies of Coronal Mass Ejections with Cross-correlation Analysis

2019

The determination of the speed of Coronal Mass Ejections (CMEs) is usually done by tracking brighter features (such as the CME front and core) in visible light coronagraphic images and by deriving unidimensional profiles of the CME speed as a function of altitude or time. Nevertheless, CMEs are usually characterized by the presence of significant density inhomogeneities propagating outward with different radial and latitudinal projected speeds, resulting in a complex evolution eventually forming the Interplanetary CME. In this work, we demonstrate for the first time how coronagraphic image sequences can be analyzed with cross-correlation technique to derive 2D maps of the almost instantaneo…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesDistribution (number theory)Sun: coronal mass ejections (CMEs)FOS: Physical sciencesAstrophysicspolarimetric [Techniques]magnetohydrodynamics (MHD)01 natural sciences0103 physical sciencesCoronal mass ejectionQB AstronomyAstrophysics::Solar and Stellar Astrophysicsmedia_common.cataloged_instanceEuropean uniondata analysis [Methods]010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QCQB0105 earth and related environmental sciencesmedia_commonPhysicsUV radiation [Sun]Horizon (archaeology)Cross correlation analysisDASAstronomy and AstrophysicsSun: UV radiationmethods: data analysiscoronal mass ejections (CMEs) [Sun]techniques: polarimetricQC PhysicsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsThe Astrophysical Journal
researchProduct

Hydrogen non-equilibrium ionisation effects in coronal mass ejections

2020

This research has received funding from the Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214). D.H.M. would like to thank both the UK STFC and the ERC (Synergy grant: WHOLE SUN, grant Agreement No. 810218) for financial support. D.H.M. and P.P. would like to thank STFC for IAA funding under grant number SMC1-XAS012. This work used the DiRAC@Durham facility man-aged by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk. The equipment was funded by BEIS capital fundin…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesHydrogenSun: coronal mass ejections (CMEs)FOS: Physical scienceschemistry.chemical_elementAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences7. Clean energycoronal mass ejections (CMEs) [un]Ionization0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsQB Astronomydata analysis [Methods]Sun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QCQB0105 earth and related environmental sciencesPhysicsUV radiation [Sun]Sun: coronaAstronomy and Astrophysics3rd-DASPlasmaMagnetic fluxSolar windQC PhysicsAstrophysics - Solar and Stellar AstrophysicschemistrySpace and Planetary SciencePhysics::Space PhysicsPlasma diagnosticsMagnetohydrodynamicsAstronomy & Astrophysics
researchProduct

Simulating AIA observations of a flux rope ejection

2014

D.H.M. would like to thank STFC, the Leverhulme Trust and the European Commission’s Seventh Framework Programme (FP7/2007-2013) for their financial support. P.P. would like to thank the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement SWIFF (project 263340, http://www.swiff.eu) and STFC for financial support. These results were obtained in the framework of the projects GOA/2009-009 (KU Leuven), G.0729.11 (FWO-Vlaanderen) and C 90347 (ESA Prodex 9). The research leading to these results has also received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreements SOLSPANET (project No. 269299, http:// ww…

Magnetohydrodynamics (MHD)corona [Sun]Sun: coronal mass ejections (CMEs)FOS: Physical sciencesAstrophysicsmagnetohydrodynamics (MHD)7. Clean energyProminencesObservatoryRadiative transferQB AstronomyAstrophysics::Solar and Stellar AstrophysicsQA MathematicsQASun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)QBPhysicsUV radiation [Sun]Line-of-sightSun: coronaAstronomy and AstrophysicsPlasmaSun: UV radiationCoronacoronal mass ejections (CMEs) [Sun]Magnetic fluxSun: filamentsAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]13. Climate actionSpace and Planetary ScienceExtreme ultravioletPhysics::Space Physicsfilaments prominences [Sun]Rope
researchProduct

Circadian variation in shedding of the oocysts of Isospora turdi (Apicomplexa) in blackbirds (Turdus merula): an adaptative trait against desiccation…

2009

5 pages; International audience; Many parasite species spend part of their life cycle in the external environment waiting for a new host. Emergence of parasites often occurs once a day, which may help to minimise mortality in an inhospitable environment and increase transition rates. Many intestinal parasites in birds are released in faeces only in the late afternoon. However, the adaptative significance of this pattern is unclear. One hypothesis is that a particular time of emergence may prevent parasite desiccation and therefore increase the parasite's life expectancy in the external environment. We tested this hypothesis experimentally using the blackbird (Turdus merula) infected with Is…

Male[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyCell SurvivalUltraviolet RaysIsosporiasisZoologyUV radiationApicomplexaSongbirdsFecesparasitic diseasesmedicine[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisParasite hostingAnimalsDesiccationAdaptation[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyRadiationbiologyIsosporaHost (biology)EcologyBird DiseasesfungiOocystsCircadian sheddingIsosporiasisbiology.organism_classificationmedicine.diseaseCircadian RhythmIsosporaInfectious Diseases[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]BlackbirdsProtozoaParasitologyAdaptationDesiccation
researchProduct